Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 419(2): 309-16, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19146482

RESUMO

The bacterium Bacillus thuringiensis produces ICPs (insecticidal crystal proteins) that are deposited in their spore mother cells. When susceptible lepidopteran larvae ingest these spore mother cells, the ICPs get solubilized in the alkaline gut environment. Of approx. 140 insecticidal proteins described thus far, insecticidal protein Cry1Ac has been applied extensively as the main ingredient of spray formulation as well as the principal ICP introduced into crops as transgene for agricultural crop protection. The 135 kDa Cry1Ac protein, upon ingestion by the insect, is processed successively at the N- and C-terminus by the insect midgut proteases to generate a 65 kDa bioactive core protein. The activated core protein interacts with specific receptors located at the midgut epithilium resulting in the lysis of cells and eventual death of the larvae. A laboratory-reared population of Helicoverpa armigera displayed 72-fold resistance to the B. thuringiensis insecticidal protein Cry1Ac. A careful zymogram analysis of Cry1Ac-resistant insects revealed an altered proteolytic profile. The altered protease profile resulted in improper processing of the insecticidal protein and as a consequence increased the LC50 concentrations of Cry1Ac. The 135 kDa protoxin-susceptible insect larval population processed the protein to the biologically active 65 kDa core protein, while the resistant insect larval population yielded a mixture of 95 kDa and 68 kDa Cry1Ac polypeptides. N-terminal sequencing of these 95 and 68 kDa polypeptides produced by gut juices of resistant insects revealed an intact N-terminus. Protease gene transcription profiling by semi-quantitative RT (reverse transcription)-PCR led to the identification of a down-regulated HaSP2 (H. armigera serine protease 2) in the Cry1Ac-resistant population. Protease HaSP2 was cloned, expressed and demonstrated to be responsible for proper processing of insecticidal protoxin. The larval population displaying resistance to Cry1Ac do not show an altered sensitivity against another insecticidal protein, Cry2Ab. The implications of these observations in the context of the possibility of development of resistance and its management in H. armigera to Cry1Ac through transgenic crop cultivation are discussed.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Toxinas de Bacillus thuringiensis , Gossypium/genética , Gossypium/metabolismo , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
2.
J Biol Chem ; 282(10): 7312-9, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17213205

RESUMO

Aminopeptidase-N (APN) and cadherin proteins located at the midgut epithelium of Helicoverpa armigera have been implicated as receptors for the Cry1A subfamily of insecticidal proteins of Bacillus thuringiensis. Ligand blot analysis with heterologously expressed and purified H. armigera Bt receptor with three closely related Cry1A proteins tentatively identified HaAPN1 as an interacting ligand. However, to date there is no direct evidence of APN being a functional receptor to Cry1Ac in H. armigera. Sf21 insect cells expressing HaAPN1 displayed aberrant cell morphology upon overlaying with Cry1Ac protein. Down-regulating expression of HaAPN1 by RNA interference using double-stranded RNA correlated with a corresponding reduction in the sensitivity of HaAPN1-expressing cells to Cry1Ac protein. This clearly establishes that insect cells expressing the receptor recruit sensitivity to the insecticidal protein Cry1Ac, and their susceptibility is directly dependent on the amount of HaAPN1 protein expressed. Most importantly, silencing of HaAPN1 in H. armigera in vivo by RNA interference resulted in reduced transcript levels and a corresponding decrease in the susceptibility of larvae to Cry1Ac. BIAcore analysis of HaAPN1/Cry1Ac interaction further established HaAPN1 as a ligand for Cry1Ac. This is the first functional demonstration of insect aminopeptidase-N of H. armigera being a receptor of Cry1Ac protein of B. thuringiensis.


Assuntos
Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Antígenos CD13/fisiologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Lepidópteros/enzimologia , Interferência de RNA , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/fisiologia , Larva/efeitos dos fármacos , Receptores de Superfície Celular/isolamento & purificação , Receptores de Superfície Celular/fisiologia , Spodoptera , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...